
 

 

 

This is the Accepted Manuscript version of an article published by Elsevier in the journal Automation 

in Construction in 2023, which is available at: https://doi.org/10.1016/j.autcon.2023.104917  

Cite as: Dayu Yua, Peng Yue, Fan Ye, Deodato Tapete, Zheheng Liang. Bidirectionally Greedy 

Framework for Unsupervised 3D Building Extraction from Airborne-based 3D Meshes. Automation in 

Construction, 152: 104917, 2023. 
 

 

 

Bidirectionally Greedy Framework for Unsupervised 3D Building Extraction from 
Airborne-based 3D Meshes 

Dayu Yua, Peng Yuea,b,c,d*, Fan Yee, Deodato Tapetef, Zheheng Liangg 

aSchool of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei, China 

bCollaborative Innovation Center of Geospatial Technology, Wuhan, Hubei, China 

cHubei LuoJia Laboratory, 129 Luoyu Road, Wuhan, Hubei, 430079, China  

dHubei Province Engineering Center for Intelligent Geoprocessing (HPECIG), Wuhan University, Wuhan, Hubei, China 

eSchool of Computer Science, China University of Geosciences, Wuhan, Hubei, China 

f Italian Space Agency (ASI), Via del Politecnico snc, 00133, Rome, Italy 

 gSouth Digitial Technology Company, Guangzhou, China 

Abstract 

Automatic building information extraction is an active research field in photogrammetry and remote sensing. 

However, most methods are proposed for supervised segmentation of point clouds or images, which can only 

capture limited building texture or geometric information, resulting in the obtained buildings being often 

fragmented. Therefore, we propose a bidirectionally greedy framework to extract spatial-continuous, 

geometry-complete, fine-textured 3D building models from large-scale 3D meshes captured by airborne in an 

unsupervised manner. The framework consists of two key steps in opposite directions, namely greedy culling 

and greedy recovery. Greedy culling will maximize the removal of non-building primitives based on geometric 

and textural features. Greedy recovery is designed to maximize the detection of building primitives that are 

mistakenly removed by the greedy culling, by utilizing topological accessibility. The framework is assessed 

quantitatively and visually on five high-resolution datasets with different scenes. The results indicate the 

framework’s effectiveness in accurately extracting fine-grained building models with complete geometry that 

can be visualized and analyzed for various 3D applications. 
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1. Introduction 

In recent years, airborne platform-based photogrammetry and LiDAR technologies have substantially improved, 

up to the point that they can collect large-scale 3D geographical information simultaneously in a cost-effective, 

fast, and accurate manner. Prominent amongst these is oblique photogrammetry mounted on an unmanned aerial 

vehicle (UAV), which represents an attractive solution to simultaneously capture Cartesian coordinates and 

texture information of building roofs and façades even in the presence of slight obscuring. While in the past 

images and point clouds (Fig 1a) were the typical graphical outputs to display collected geographical information, 

3D meshes (Fig. 1b-c) have increasingly become a common carrier for 3D geographic information and are 

widely used in many fields such as virtual geographical environment, 3D geographic information system (GIS), 

and digital twins [1,2,3,4]. 

 

To distinguish from ordinary 3D meshes in computer graphics (CG), we call “geomesh” a realistic 3D mesh of a 

large geographic scene captured from an airborne platform. Compared to 2D images, such as digital orthomosaic 

models (DOM) and digital elevation models (DEM), geomeshes contain detailed 3D geometric and texture 

features. Compared with discrete point clouds, geomeshes are characterized by advantages, such as spatial 

continuity, explicit adjacencies, and simultaneous geometric and texture information. In addition, geomeshes 

occupy less disk and memory, mainly because some geometrically irrelevant points are filtered out during the 

process of reconstruction and mesh generation from the point cloud. Therefore, geomeshes are preferred for 3D 

geographic applications and spatial analysis [5]. 

   

               (a)                                 (b)                               (c) 

Fig. 1. Example of (a) point cloud, (b) 3D mesh, and (c) realistic 3D mesh with textures (i.e., geomesh) of the same scene encompassing 

buildings. 

 

However, for visualization purposes, current realistic 3D modeling software (e.g., Photomesh and 

ContextCapture) rely on an automation mechanism by which the entire geographical scene is expressed with a 

continuous geomesh without category differentiation of feature objects. This process prevents the management, 

query, and analysis of 3D geographic information can be objectified. Therefore, the value of geomeshes is 

hampered for use in 3D geographic information engineering for city-scale topics such as digital twins and 

microclimate modeling [6,7,8]. Usually, buildings are the most valuable object category in a geomesh. However, 

their objectification process requires a high degree of human interaction, which is very time-consuming and 

accounts for more than half of the total time required for the 3D urban modeling process.  

 

Automatic building extraction from remote sensing data increasingly benefits urban planning, disaster simulation, 

and updating of GIS databases. It has always been an active research field in photogrammetry and remote sensing 

[9]. However, it is still a challenging task due to the high complexity of urban scenes which include factors such 

as trees, water regions, and man-made non-buildings features, that in turn cause an increase of commission 

and/or omission errors in building extraction [10]. Efforts have been made to extract footprints and geometric 

information of buildings from images and point clouds [11,12,13,14,15,16,17], but there have been no relevant 
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investigations focused on geomeshes. Point clouds are indeed considered intermediate products [18], given that 

the building information extracted from a point cloud still needs to be reconstructed to generate building models. 

On the contrary, building models extracted from geomeshes are considered as end-user products and do not need 

to undergo such a process. These methods, either unsupervised [15,16,19] or supervised depth learning 

[17,20,21], are inevitably affected by fragmentation in the extracted buildings. This issue is particularly prevalent 

at the building boundaries, as these methods prioritize accuracy over the geometric integrity of the resulting 

buildings. Unfortunately, the loss of a geometric primitive during 3D building model extraction from a geomesh 

can substantially affect both the visualization and analysis capabilities of 3D applications based on them. 

 

A novel bidirectionally greedy framework is therefore proposed to extract spatial-continuous, geometry-complete, 

fine-textured 3D building models from geomeshes in an unsupervised manner. The framework consists of two 

key steps in opposite directions, namely greedy culling and greedy recovery. Greedy culling will maximize the 

removal of non-building primitives based on geometric and textural features. Greedy recovery is designed to 

maximize the detection of the building primitives that are mistakenly removed by the greedy culling, by utilizing 

topological accessibility. After these two seemingly opposite steps, 3D building models are extracted with high 

recall and accuracy. The contributions of this paper can be listed as follows: 

1) The first attempt to segment buildings from airborne-based 3D meshes in an unsupervised manner. 

2) We proposed a bidirectionally greedy framework that can extract spatial-continuous, geometry-complete, 

fine-textured 3D building models from realistic 3D meshes with high recall and accuracy. 

3) As far as we know, few studies utilize topology structures to extract building information from various 

sources. So, this paper shows a new approach that utilizes topological accessibility to ensure the geometric 

integrity of buildings. 

4) We provide multi labeled geomeshes for the realistic 3D building extraction task, and the proposed methods 

are evaluated on the geomeshes 

 

The rest of the paper is organized as follows: the related works are reviewed in Section 2. The proposed building 

extraction framework is introduced in detail in Section 3. The results of implementations are reported in Section 

4, analyzed and discussed in Section 5. Conclusions are provided in Section 6. 

2. Related Works 

2.1. Building extraction 

To date, geomesh is a recently proliferated 3D geographic data. However, not enough research has been made to 

extract building objects from geomesh. On the contrary, many approaches have been developed to extract 

buildings from other data sources. These research works can be generally divided into three method-related 

groups, namely 2D images-based, point clouds-based, and 2D-3D information fusion.  

 

The 2D images-based method typically relies on visual or spectral features to segment buildings from images, 

the latter being collected from satellites [10,22,23,24,25,26] or airborne platforms [11,12,27,28,29]. Although 

promising 2D building footprints and rough heights have been obtained, occlusions and shadows leading to 

significant errors cannot be avoided, especially in densely built-up areas [9]. 

 

Various methods using geometric features or shape descriptors have been proposed to extract building points 

from point clouds, the latter being collected by terrestrial laser scanning (TLS), mobile laser scanning (MLS), 
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airborne laser scanning (ALS), and aerial oblique photogrammetry. The point clouds collected by 

LiDAR-only-based acquisition such as ALS, TLS, and MLS have significant fragmentation of individual 

buildings without multi-view stitching, partly due to data collection imperfections including occlusions, shadows, 

and general noise [10,30]. Oblique photogrammetry, on the other side, can capture complete building 

information even in densely developed areas because of its simultaneous acquisition from multiple views. These 

methods on point clouds can be mainly classified as detection-based, morphological, and classifier-based 

methods.  

 

In detection-based methods, façade and roof features are detected from a point cloud by integration of 

pre-existing knowledge regarding building shapes, such as normal distribution, curvature distribution, density 

variation, and distance variation. For this objective, region growing (RG) [13,31,32,33], random sample 

consensus (RANSAC) [34,35], Hough transform (HT) [36,37], and clustering approaches [38,39,40], which are 

four major contenders, are often utilized for building detection. Intrinsically, these algorithms transform a 

building detection problem into a plane-fitting problem for façades and roofs. In principle, RG finds the planes 

by accumulating the neighboring pints into a region satisfying growing conditions. RANSAC is an iterative 

algorithm to correctly estimate planar parameters from a point cloud that may contain outliers. HT maps a point 

cloud into a discretized parameter space and then extracts planes by selecting those parameters with a significant 

number of votes. However, RANSAC and RG often extract unexpected planes in vegetation areas, while the HT 

is time-consuming [9,41]. On the other hand, clustering methods extract building planes by minimizing an 

energy function considering planar features. 

 

Several morphological methods have been proposed for building detection based on dilate and erode operators. 

Chen et al. [42] proposed a modified morphology algorithm to mark points as building points, which used a large 

window and a small window to perform the opening. Cheng et al. [43] introduced the reversed iterative 

mathematic morphological algorithm that allows the thresholds to be determined in a self-adaptive way for the 

derivation of building regions from LiDAR data. Mongus et al. [41] used characteristic values mapped from 

differential morphological profiles for building extraction. In general, the performance of morphological 

methods in building extraction is significantly worse than that for ground filtering of point clouds [44,45], and 

the choice of a structuring element plays an important role when considering their accuracies. 

 

Owing to the structural heterogeneity of buildings, the accuracy of detection-based and morphology methods is 

hard to meet industrial needs. Therefore, some studies have used classifiers to extract buildings, improving the 

accuracy of extraction. Zhang [46] applied geometry, intensity, and radiometry characteristics into a support 

vector machine to classify the objects of urban regions. A reliable result in complex urban scenes was obtained 

by integrating a random forest (RF) classifier into a conditional random field (CRF) framework [47]. An 

AdaBoost classifier was trained to separate the TLS point clouds based on multiscale and hierarchical point 

clusters [40]. More recently, the more popular classifiers for point clouds are the so-called deep learning 

methods such as convolutional neural network (CNN), graph convolutional network (GCN), and transformer. 

For example, an efficient and lightweight CNN, namely RandLA-Net, was proposed to directly infer per-point 

semantics for large-scale point clouds [21]. A very deep 56-layer GCN was successfully trained for point cloud 

segmentation [20]. Recently, a self-attention network, namely Point Transformer, was designed for the semantic 

segmentation of point clouds [17]. 

 

Although building points contain 3D geometric information that can be further reconstructed into 3D models of 
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buildings, extraction from a point cloud is still a challenging task. Hence, several studies [9,48,49,50,51] have 

attempted to extract buildings based on point clouds with 2D information as auxiliary data (i.e., 2D-3D 

information fused methods). While small improvements in accuracy can be obtained, these methods require both 

the point cloud and auxiliary data such as DOM, DTM, and NIR image which are difficult to meet in practice, 

making the application scenario very limited. Moreover, the process of registering the auxiliary data to a point 

cloud inevitably generates registration errors which increase the risk of error propagation in the building 

extraction [9]. 

 

Regardless of the type of data used, the aforementioned studies can be divided into unsupervised and supervised 

methods depending on whether ground truth is required. In general, supervised methods perform better than 

unsupervised ones, but many ground truths and hours are needed to precisely model the feature distribution to 

final target classes. Both unsupervised and supervised methods face the problem that the geometric structure and 

boundaries of the extracted buildings are incomplete, requiring larger manual editing and trimming efforts. For 

mesh with complex data structure, ground truth does not exist in the actual production and application process, 

and its annotation is difficult and inefficient.  

 

For this reason, this study focuses on the use of unsupervised methods to extract buildings. Building extraction 

from 3D information in an unsupervised way tends to encompass two major components: segmentation and 

building detection [14,15,19,52,53,54,55,56]. 

2.2. 3D segmentation 

In the last decades, extensive studies have been done to improve the efficiency and robustness of 3D 

segmentation, which can be roughly categorized into geometric fitting-based, RG-based, and clustering-based 

methods. 

 

In the geometric fitting-based methods, the most widely employed strategies are RANSAC and HT which have 

been proven to fit shapes successfully in 2D as well as 3D [34]. Many variants of RANSAC or HT have been 

proposed for segmentation [31,34,35,57,58]. For example, an efficient RANSAC was developed to fit multiple 

geometric shapes, even in the presence of up to 50% outliers [34]. Chen [35] proposed an improved RANSAC 

with localized sampling which significantly improves the segmentation efficiency. An efficient multi-resolution 

method was presented to segment a point cloud into planner components by combining RANSAC and HT [58]. 

Although these methods segment point clouds into a set of planes with a relatively high level of success, a large 

computational cost and high memory consumption are caused by the iteration process of using robust estimators 

or the voting process [59]. 

 

RG is another common approach. For RG, the consistency of normal vector, curvature of points or surfaces, and 

texture are commonly used growing criteria [13,31,60,61,62,63]. To improve the robustness, more accurate 

normal vectors were estimated by fast minimum covariance determinants based on robust principal component 

analysis (PCA) [63]. Xiao [62] presented a subwindow-based RG and a hybrid RG for plane segmentation in 

structured and unstructured environments, respectively. For efficiency improvement, an adaptive Octree-based 

RG was introduced by incrementally grouping adjacent voxels with similar saliency features [61]. The RG 

methods using curvature labeling were proposed for the decomposition of 3D triangular meshes by grouping the 

topologically adjacent mesh elements with the same surface type [64,65]. RG is a robust and fast segmentation 

method, but it is not always highly accurate due to the sensitivity to the selection of initial seeds [13]. Normally, 
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this issue can be mitigated by identifying the smallest curvature or surfaces with minimal residual of the plane 

fitting as seeds [66]. 

 

In clustering methods, points having proximity or similarity meeting the acceptable threshold will be identified 

as one cluster. Euclidean distance, density, normal, and texture are the most adopted clustering criteria 

[39,40,59,67]. The computational cost of clustering methods is usually higher than those of the above other two 

types of methods due to the complexity of calculating the similarity as well as the optimization of energy 

functions [59]. To better segment, complex clustering criteria such as local convexity, local concavity, and fast 

point feature histograms (FPFH) [68] are intensively applied [69,70,71]. However, this further increases the 

computational cost. Recently, an over-segmentation algorithm based on supervoxels, namely voxel cloud 

connectivity segmentation (VCCS), was proposed [71]. For better object boundaries, boundary points are first 

excluded to generate supervoxels that maintain the shape of target boundaries [72]. Lin et al. [73] proposed an 

approach that can produce supervoxels with adaptive resolutions and does not rely on initial seeds. The 

over-segmentation method can produce a set of well-bounded and uniform supervoxels with high efficiency, thus 

it is widely used as a preprocessing step in the segmentation or classification of point clouds 

[16,59,67,72,74,75,76]. 

2.3. Feature detection 

After coarsely segmenting 3D information into a set of patches such as planes, clusters, and supervoxels, feature 

detection is typically needed to identify building patches from vegetation and other objects [13,14,19,52,53]. For 

this purpose, several patch characteristics, such as position, orientation, roughness, mean elevation, angular, and 

density, were applied based on region growing segmentation [54,55]. Mongus et al. [41] regarded buildings as 

large above-ground objects with planar surfaces and identified them by regional analysis considering geometric, 

surface, and regional attributes. Furthermore, the penetrating feature was employed because a laser beam hardly 

penetrates the building [19]. Gilani et al. [13] accounted that the non-building region is usually small in size and 

has a high concentration of sharp feature points. The computationally-efficient slicing methods were introduced 

for detecting overall faced and window boundary points based on a local density analysis technique [30,56]. In 

summary, these studies perform a regional analysis for each patch based on certain manually defined 

characteristics to identify buildings. 

 

Another unsupervised solution is to detect building objects by global energy optimization based on probability 

theory. For example, Yang et al. [15] presented a marked point process for extracting buildings utilizing the 

Gibbs energy model and a reversible jump Markov chain Monte Carlo algorithm. Zhu et al. [16] proposed a 

high-order Markov random field framework for point classification based on multi-level semantic relationships 

including point-homogeneity, supervoxel-adjacency, and class-knowledge constraints. Compared with regional 

analysis methods, the methods based on energy function have higher accuracy. However, heavy computational 

costs are required during the energy function optimization.  

3. Methodology 

3.1. Overview 

The proposed bidirectional greedy framework for building extraction is based on three basic assumptions: 1) the 

main (not the whole) building geometric structure consists of planes; 2) the color of leafy trees is close to green; 

3) the above-ground objects are topologically separated after ground primitives filtering. The framework is 
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composed of two greedy processes in opposite directions, i.e., greedily culling of non-building objects based on 

ensuring the integrity of the main building geometric structure without caring that part of building primitives is 

removed mistakenly, and afterward, greedily recovering the mistakenly removed building primitives based on 

the main geometric structure primitives using topology without caring that part of the non-building primitives 

are recovered mistakenly. A detailed block diagram of the proposed framework is depicted in Fig. 2 with 

involved algorithms as well as illustrations of intermediate results. 
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Fig. 2. Workflow of the proposed framework for building extraction. Notation: FN: false negative. 

 

The framework consists of four different levels: primitive, patch, plane, and building levels. At the primitive 

level, the ground primitives are first filtered by a ground filter (e.g., CSF4Geomesh) [77] for the topological 

separation of building primitives from other primitives of above-ground objects. After that, the above-ground 

primitives are further over-segmented to produce patches with uniform geometric and color properties. These 

patches will replace the primitives as the basic entities for subsequent operations, achieving two advantages: 

First, the computational efficiency is improved because the number of patches is significantly lower than the 

primitives. Second, plane detection (c.f. Section 3.3.2) based on patches is more likely to generate results with 

regular shapes.  

 

Although a building is not required to be composed entirely of planes according to Assumption 1, the planar 

feature is necessary to identify buildings. Thus, the parameter-free planar detection based on patches is designed 

to find planar structures that shape buildings at the patch level. The detection method maximizes the utilization 

of topology among patches and improves its automation and performance by coupled metaheuristics. 

 

After the above parameter-free plane detection, all planar features are extracted, not only from buildings, but also 

from tree canopies, city furniture, cars, and so on. Extracting building planes directly from these planes 

inevitably leads to vestigial building in the results. Therefore, at the plane level, instead of extracting buildings 

directly, we greedily cull non-buildings even if some of the building planes are also excluded. 

 

The plane level seeks to maximize the culling of non-building objects while preserving the main planes of 

buildings. As a consequence, a portion of the building primitives is inevitably culled. At the building level, we 
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present a greedy recovery method for culled building primitives based on the explicit topological adjacency of 

primitives. Finally, 3D building models were extracted with high accuracy and integrity. 

3.2. Primitive over-segmentation 

An over-segmentation method is designed to segment geomeshes into meaningful patches with homogeneous 
geometric and textural properties. The details of the over-segmentation are as follows.  

A geomesh without ground primitives G is defined as a tuple {V, F} of vertices V = {v |v ∈ ℝ , 1 ≤ i ≤ m}, 

and primitives T = {t = (v , v , v )|v , v , v ∈ V, j ≠ k, k ≠ l, l ≠ j, 1 ≤ i ≤ n}, which are usually triangles, but 

can also include other types of planar polygons. An over-segmentation Σ of G is the set of patches, i.e., Σ =

{M , …, M }, induced by a partition of T into k disjoint sub-sets for minimizing the homogeneity criterion 

function J(∙) of patches under a set of constraints (i.e., ⋃   M = G). 

 

The criteria J for deciding which primitives belong to the same patch is the most important factor affecting the 

result, and it is computed according to Eq. 1.  

J(r ) = ∑   ∑   r D t , t ,                                              (1) 
where, D(∙) is used to measure the homogeneity between any two primitives as per Eq. 2, 

D(t , t ) = μ D (t , t ) + μ D (t , t ) + μ D (t , t ),                                      (2) 

where, 𝐷  is the orientation item that controls the geomatic similarity (i.e., cosine similarity) as per Eq. 3; 𝐷  is 

the 𝐿  distance norm that controls the spatial difference as per Eq. 4; 𝐷  is the 𝐿  CIE76 norm that controls 

the color difference as per Eq. 5; 𝜇 , 𝜇 , and 𝜇  are three weights. For the experiments in this paper, the three 

weights are respectively set to 1, 0.4, and 0.1.  

D t , t = 1 − |n ⋅ n |,                                                            (3) 

D t , t = ∑ t
( )

, t
( )

 ,                                                      (4) 

D t , t = lab∗, lab∗ ,                                                           (5) 

where n  is the normal of t ; t
( ) denotes the first q vertex of t = v , v , v ; lab∗ is the color of t  in the 

CIELab color space. As shown in Fig. 3, the lab∗ is a mean color of all textural pixels within the range of the 

UV texture coordinates of t , which is calculated by the rasterization algorithm based on scanlines and UV 

mapping. 
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Fig. 3. Illustration of the mean color calculation of geometric primitives. 

 

For minimizing the criteria J(r ) under the constraints, we adopt the efficient energy descent method [73] based 

on energy function as per Eq. 6. 
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E r = J(r )  + |I ∑   r −
 ( )  ( )

×
( )  ( )

|,                              (6) 

where, V ={v
( )

|v ∈ V}, and V ={v
( )

|v ∈ V}. 

3.3. Parameter-free plane detection 

In this section, we propose a novel parameter-free plane detection method with a coupling scheme of RG and 

metaheuristic. As shown in Fig. 4, instead of primitives, we use patches as the basic units for plane detection 

based on an efficient RG that incrementally groups adjacent patches having similar features into a plane set. The 

benefits of using patches have been mentioned in Section 3.2. The utilization of patchwise topology based on the 

adjacency graph constructed in Section 3.3.1 allows a rapid search for adjoining patches, further improving 

efficiency and performance compared to K-nearest neighbor algorithm (KNN) which is computationally 

intensive and often results in topologically disconnected being assigned to the same plane. The requested 

parameters are automatically configured toward the best detection result by a coupling mechanism named 

self-adaptive Jaya [78] for plan detection and metaheuristics proposed in Section 3.3.3, thus improving the 

automation and performance. 

 

A patch

A primitive

A seed patch

Patch topology 
construction

Growing based 
on metaheuristic   

A detected 
roof plane

 

Fig. 4. Illustration of the parameter-free plane detection method. 

3.3.1. Patchtwise adjacency graph construction 

KNN is commonly used to find neighbors of primitives in feature detection, however, the computation of KNN 

leads to high computational complexity. Moreover, since topology is not considered, KNN often results in 

topologically disconnected entities that are considered to belong to different planes being assigned to the same 

plane. For instance, if KNN is used, patch A in Fig. 5 will be assigned to a plane with patches B and C which are 

disjointed from it.  
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Fig. 5. Illustration for the topology of primitives and planes in the case of two adjacent building roofs and a neighboring tree: A-F denote 

different patches; the central red dashed lines denote disjoint topology between mesh tile A and mesh tile B. 

 

For meshes, KNN is not necessary because the topology between primitives can provide the adjacency graph. 

However, to improve visualization efficiency, geomeshes are often sliced so that the adjacency is disconnected 

between different tiles as shown by the red dashed line in Fig. 5. For this reason, we propose a method for 

constructing patchwise adjacency graphs. The construction problem of the adjacency graph for patches is defined 

as follows: for each patch M ∈ Σ, find the index of all patches adjacent to it. Here we use the indexes of 

primitives in T to denote the primitive set T  of M . First, the set of all primitives adjacent to a patch M  is 

computed as per Eq. 7, 

A = {⋃ A(t )∈ |t ∈ T},                                                           (7) 

where function A(∙) is used to get all the primitives adjacent to t  based on a criterion J  (as per Eq. 8) that 

two adjacent primitives have at least one common vertex, as per Eq. 9: 

J (t , t ) =
1, if ∃ 1 ≤ i, j ≤ 3⋀a ∈ T ⋀1 ≤ b ≤ n, t

( )
= t

( )

0, else
,                              (8) 

A(t ) = {t ∈ T|J (t , t ) = 1},                                                       (9) 

where t
( ) is the i-th vertex of t = v , v , v . Then, A  is reassigned as the adjacent patch set of M  

following Eq. 10, 

A = {l |t ∈ A },                                                                    (10) 

where l  denotes the index of the patch to which primitive t belongs; A  is a collection without repetitions. 

Orange lines in Fig. 3 show how the adjacent graph is constructed for patches A-G according to Eq. 10. Unlike 

KNN, patch A will not be treated as a neighbor of B and C in Fig. 5.  

3.3.2. Patch-based region growing 

Here a plane detection ψ of Σ is the set of patches ψ = {R , …, R } induced by a partition of Σ into m 

plane sub-sets and a not-plane sub-set R  following a growing criterion J (∙), where ⋃   R = Σ, and 

R ⋂R = ∅, i ≠ j. As shown in Fig. 4, each plane R ∈ ψ is detected as follows: 1) pick a seed patch M  from 

Σ; 2) find neighbors of M  by the constructed adjacent graph constructed; 3) include those neighbors which 

satisfy the growing criterion J (∙) = 1 as per Eq. 11; 4) repeat the step 2) and 3) for all included neighbors; 5) if 

no further neighbor satisfies J (∙) = 1, repeat 1)-4) until Σ is empty. In step 5), if the number of patches in the 

plane does not exceed 3, discard it. 

J (M , M ) =
1, if arccos (

∙

| || |
) < θ ⋀ 

( )∙

| |
< d

0, else
,                              (11) 

where M  is the seed patch; M  denote a neighbor of M ; n  are the mean normal associated with all 

primitives in current plane R ; n  are the mean normal associated with all primitives in M ; v  and v  are 

the mass centers of M  and M , respectively ; θ is an angle threshold indicating the maximum accepted angle 
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between the normals associated with M  and M ; d  is a distance threshold indicating the maximum accepted 

distance between v  and v . The detected planes are shown in Fig. 4. 

3.3.3. Metaheuristic optimization 

The optimization problem of plane detection can be formulated as per Eq. 12. In general, the planes that shape a 

building are approximated as rectangles, so we expect that the detected plane shape is close to rectangular with 

integrity (i.e., with regular boundaries and no missing primitives inside) and flatness. Thus, we proposed an 

evaluation function J (∙) ∈ [0,1] as per Eq. 13 for the planes generated by θ, d .            

(θ , d ) = max
,

 {J (θ, d )|θ ∈ [10°, 45°], d ∈ [2,20]},                                 (12) 

J (θ, d ) = 0.5 ∑ ω (C (R ) + C (R )),                                           (13) 

where θ  and d  are optimal values searched in empirical intervals; ω  is a weight coefficient defined by the 

ratio of the area of R  to the total area of ψ induced by θ and d ; C (∙) and C (∙) measure the flatness and 

integrity of a plane, respectively.  

 

C (R ) measures the flatness of R  by the principal PCA applies to the set of triangles in R  and is computed 

as per Eq. 14. The main idea of PCA is to compute the covariance matrix of triangle set in R , perform its 

eigendecomposition and then determine the top 3 eigenvalues. The greatest eigenvalue λ  lines on the first 

eigenvector in which the data has a strong component, the second eigenvalue λ  lies on the second eigenvector, 

and so on.  

C (R ) = 1 − ,                                                                (14) 

where λ  is the 2nd eigenvalue of R , and λ  is the 3rd eigenvalue. 

 

We derive the closed form of covariance matrix C  for plane R  consisting of l trianglesas per Eq. 15. 

C = ∫   x − c x − c dx

= ∫   x x − c x − x c + c c dx

= O − c ∫   x dx − ∫   x dx c + c c ∫   dx

= O − m c c

 ,                       (15) 

where O  is the second order moment of R  with respect to origin and is computed as per Eq. 16; m  is the 

area of plane R ; c  is the center of mass of R . 

O = ∑   A O A ,                                                       (16) 

where s = {(1,0,0), (0,1,0), (0,0,1)} is a standard triangle; m  is the area of triangle t ; A  is an affine 

transformation matrix that maps the vertex coordinates on s onto t  and is given as per Eq. 18 

A =

v
( )

v
( )

v
( )

v
( )

v
( )

v
( )

v
( )

v
( )

v
( ) ,                                                         (17) 

where v , v , and v  are the three vertices of t . O  is the second order moment of s with respect to origin 

and is given as per Eq. 18. 

O =

1/12 1/24 1/24
1/24 1/12 1/24
1/24 1/24 1/12

.                                                     (18)   
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We measure the integrity C (R ) of R  by an area ratio of R  to the largest face of its oriented bounding box 

(OBB) as per Eq. 19. As shown in Fig. 6a if the plane R  is intact, C (R ) is equal to or slightly greater than 1. 

In contrast, if R  is mutilated (i.e., misses some triangles), C (R ) is less than 1, and the more mutilated the 

plane is, the smaller the ratio is.  

C (R ) = min {
∑  

 { × , × , × }
, 1},                                             (19) 

where, a , b , and c  are the lengths of the three mutually perpendicular sides of OBB of R . 

(a) (b)

Plane
OBB
AABB

 

Fig. 6. Illustration for (a) intact and (b) mutilated planes and their respective oriented bounding boxes (OBBs). 

 

As shown in Fig. 16a, differently from an axis-aligned bounding box (AABB), OBB provides a tighter cuboid 

with an orientation adapted to the shape of the object. However, the minimal OBB is difficult to compute. Here, 

we use an efficient method to compute an approximate minimal OBB for a plane. First, we compute the 

eigenvectors of plane R  by eigendecomposition of the covariance matrix using Eq. 15. Then, these 

eigenvectors are used to transform the vertexes to the origin so that the eigenvectors corresponding to the 

principal axes. Finally, we compute the center, min, and max of the diagonal.  

 

The solution of Eq. 13 based on the proposed criterion function J (∙) can be optimized by a metaheuristic 

algorithm, which relies on an approximation strategy to find "best available" result within an acceptable 

computational cost. Here, the metaheuristic we choose is self-adaptive Jaya [78]. It should be noted that 

self-adaptive Jaya is not the only choice, but can also be replaced by other metaheuristic algorithms such as ant 

colony methods and genetic algorithms. 

3.4. Greedy culling of non-building planes  

Cull small and low-rise planes Cull vegetation planes  

Fig. 7. Illustration for greedy culling of non-building planes. 

3.4.1. Culling of small and low-rise planes  

As shown in Fig. 7, there are some small and low planes in ψ, which are usually not from buildings but small or 

low-rise objects such as part of vegetation, cars, and city furniture. To obtain the set ψ  containing only 
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building planes, we first cull small planes as per Eq. 20 by specifying an area threshold d  that is smaller than 

the area of most planes belonging to the roof or façade of buildings. 

ψ = {m ≥ d |R ∈ ψ}                                                           (20) 

 

Then, we further cull low-rise planes by a height threshold d  and update ψ . d  is a height above ground 

level (HAGL) measured with respect to the underlying ground surface. Planes with weighted HAGLs below this 

threshold are culled as per Eq. 21, where h  denotes the HAGL of triangle t . h  is calculated by subtracting 

the mean height of nearby ground triangles searched by KNN from the mean height of t . In most situations, the 

heights of low-rise plane object such as cars, urban furniture, pedestrians, and shrubs do not take values greater 

than 2 m, so d  is set to 2. 

ψ = {
∑ ∈

≥ d |R ∈ ψ }.                                                   (21) 

3.4.2. Culling of vegetation planes 

Although the small and low-rise vegetation has been culled as per the workflow step described in Section 3.4.1, 

it is likely that there are still large and high-rise tree canopies. Based on Assumption 3 (cf. Section 3.1), these 

canopy planes are culled by a color index (i.e., excess green minus excess red). The colors of the triangle have 

been calculated in Section 3.2. 𝜓  is further updated for culling tree canopies as per Eq. 22, where 𝑟𝑔𝑏  is the 

color of 𝑅 , and 𝑑  is a threshold beyond which the plane is considered as vegetation. 

𝜓 = {3𝑟𝑔𝑏
( )

− 2.4𝑟𝑔𝑏
( )

−𝑟𝑔𝑏
( )

< 𝑑 |𝑅 ∈ 𝜓 }.                                     (22) 

 

The value of 𝑑  is automatically set based on the maximum interclass difference method based on an analysis 

of the histogram resulting from the color index calculation. The optimal value is given by exhaustively searching 

for 𝑑  that maximizes the inter-class variance between vegetation and other objects. 

3.5. Greedy recovery of building primitives 

According to Assumption 3 (cf. Section 3.1), the above-ground objects are topologically separated after ground 

primitives are filtered out. Therefore, the neighbors topologically adjacent to the main structure of the building 

do not contain non-building primitives. With this feature, we present the greedy recovery method of building 

primitives. The method greedily searches for the neighbors adjacent to 𝜓  in culled objects by topological 

accessibility and marks them as building primitives. 
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Fig. 8. Illustration for greedy recovery of building primitives based on topology. Notation: 𝑡  is a primitive; Ⅰ, Ⅱ, and Ⅲ are the first-, 

second-, and third- neighbors of 𝑡 , respectively. 

 

Topological accessibility between primitives 𝑎 and 𝑏 is defined as a vertex of 𝑏 to be reached from a vertex 

of 𝑎 after traveling through edges of zero or more intermediate primitives. Let 𝑇  is the set of primitives 

forming 𝜓 , 𝑇 is the set of above-ground primitives, and 𝑇  is the final result considering structural integrity. 

For each 𝑡 ∈ 𝑇 , the algorithm searches for all primitives in 𝑇 that it can topologically access, and mark these 

primitives as buildings to be added to the final building set 𝑇 . Specifically, all primitives to be reached from 𝑡  

are obtained by ceaselessly finding first- and multi-order neighbors of it according to Eq. 8. As shown in Fig. 8, 
the primitives of types Ⅰ, Ⅱ, and Ⅲ are the first-, second-, and third-order neighbors of 𝑡 , respectively. These 

neighbors including the broken (i.e., grey triangles in Fig. 8) and the wrongly culled (i.e., green triangles in Fig. 

5) building parts will be added to 𝑇 , while the other objects (i.e., cyan triangles in Fig. 8) such as trees will not 

be added because they are topologically isolated from the broken building parts. 

 

Fig. 9. Pseudocode for greedy recovery. 

 

Based on the depth-first search strategy, the method is implemented as per Algorithm 1 displayed in Fig. 9. In 

the input list, the function adjacentTs(𝑇, 𝑣) is used to determine the primitives formed by vertex 𝑣 from the 

above-ground primitives set 𝑇. In addition, to prevent the non-building primitives in 𝑇 from being widely 

mis-recovered due to the presence of a few non-building primitives in 𝑇  that are not culled, we split 𝑇 

uniformly into slices with side length 𝑑 . Then, the algorithm finds all topologically accessible primitives of 𝑡  

in the slice where 𝑡  is located, thus effectively mitigating this problem. In most cases, modeling software for 

visualization purposes run the slicing step automatically, so no extra computational costs are requested. 
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4. Experiments 

4.1. Evaluation metrics 

To quantitatively evaluate the performance of the proposed framework, we adopt four standard metrics: 

accuracy, precision, recall, and F1-score (F1). These metrics can be calculated using the following formulas: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
  

 ,                                                       (24) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
  

 ,                                                             (25) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
  

 ,                                                                (26) 

𝐹1 = 2 ×
×

   ,                                                         (27) 

where TP, FP, FN, and TN are true positive, false positive, false negative and true negative classifications, 

respectively.  

4.2. Datasets 

Five experiments with different datasets are reported in this section. The first and second experiments were 

performed using the high-resolution benchmark dataset (H3D) captured with LiDAR over Hessigheim in 

Germany [79], while the remaining ones were done using a high-resolution dataset (named Gm4B) collected by 

oblique photogrammetry. The geomeshes used in all five tests have no ground primitives.  

 

The geomeshes in the H3D dataset were produced by point clouds and images collected by a LiDAR and two 

cameras mounted on a UAV. Because the point cloud was collected using LiDAR, the building façades include 

fewer valid points and less geometric accuracy, especially in dense building areas. The first experiment used a 

geomesh which integrates the meshes identified with ID 51392. Similarly, the meshes identified with ID 51398 

were used to perform the second experiment.  

 

Gm4B was collected by 5-view oblique photogrammetry from a suburb that contains high-density residential 

areas, schools, trees, etc. Compared with H3D, Gm4B has higher geometric accuracy, finer texture, and higher 

topological quality. Gm4B was first filtered off-ground primitives by CSF4Geomesh. Then, it was labeled 

manually. The details of the five geomeshes are listed in Table 1.  

 
Table 1. The details of the geomeshes used in the experiments. 

Geomesh ID Vertex Number Primitives Number Box Size (m) Tile Number Tile Size (m) 
H3D_51392 841257 1644517 52*468*25 16 53 
H3D_51398 806644 1564992 57*468*24 27 53 

Gm4B_1 281732 5215771 94*288*24 781 8 
Gm4B_2 3077862 5694838 65*406*23 923 8 
Gm4B_3 2694588 4935134 65*389*62 1115 8 

4.3. Experimental setup 

The proposed bidirectionally greedy framework was coded in C++17, and the experiments were run in a Linux 

system on an Intel Core i7-10700 CPU with 32 GB memory. Seven user-specified parameters are required for 
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our framework: three over-segmentation weights (i.e., 𝜇 , 𝜇 , 𝜇 , and 𝑑 ), area threshold 𝑑 , height threshold 

𝑑 , and slice length 𝑑 . The values of the parameters are shown in Table 2. 

 
Table 2. Parameter setting of the experiments. 

Geomesh ID 
 Primitive level  Plane level  Building level 
 𝜇  𝜇  𝜇  𝑑  (m)  𝑑  (𝑚 ) 𝑑  (m)  𝑑  (m) 

H3D_51392  1 0.4 0.1 1   10 2  53 
H3D_51398  1 0.4 0.1 1  10 2  53 

Gm4B_1  1 0.4 0.1 1  10 2  8 
Gm4B_2  1 0.4 0.1 1  10 2  8 
Gm4B_3  1 0.4 0.1 1  10 2  8 

4.4. Results 

The evaluation metrics of the five tests on a per-primitives level listed in Table 3 highlight very promising 

building extraction results obtained with the proposed framework. Almost all the buildings were extracted 

correctly with a particularly high recall, even close to 99% on Gm4B_2 and Gm4B_3. For the overall 

classification performance, the framework achieved more than 86% accuracy. 

 

The visualized results are shown in Fig. 10-15, from which it can be seen that, unlike other methods that extract 

2D footprints or 3D geometry points of buildings from images or point clouds, our method extracts, 

spatial-continuous, structural-complete, fine-textured 3D building models with various shapes from geomeshes. 

Typical extraction results are shown in Figure 10, including bungalows, multi-story buildings, high-rise 

buildings, attached buildings, and agricultural buildings. 

Bungalows

Multi-storey buildings Attached buildings 

Aigh-rise buildings Agricultural buildings
 

Fig. 10. Typical buildings extracted by the proposed method. 

 

Table 3. Results of quantitative performance assessment of the proposed framework. 

Geomesh ID TP FP TN FN  recall precision accuracy F1 
H3D_51392 713961 176,918 709,456 44082  0.942 0.801 0.866 0.866 
H3D_51398 255378 186996 1094663 27955  0.901 0.577 0.862 0.704 

Gm4B_1 1991715 305140 2,816,965 101951  0.951 0.867 0.923 0.907 
Gm4B_2 3309678 149346 2198409 37405  0.989 0.957 0.967 0.973 
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Gm4B_3 2934452 185,257 1,779,828 35597  0.988 0.941 0.955 0.964 
 

As revealed in Table 3 and Fig. 11-15, the framework performs better on Gm4B than on the H3D. Three factors 

can explain this result. First, the number of building primitives in H3D is extremely few and significantly lower 

than those of non-building, thus resulting in some of the metrics being too low even if a small part of buildings is 

missed, especially on the H3D_51398. Second, the geometric and topological quality of H3D is worse than that 

of Gm4B, especially the side elevation of the building, because of the difference in collection and production 

means. Third, H3D is a rural scene in which the buildings are of low height and topologically connected to a 

number of trees. 

(a) 

(b) 

(c) 

(d) 

 (e) 

 (f) 

(g) 

(h) 

Fig. 11. Detailed visualization of extraction results for H3D_51392: (a) geomesh; (b) geomesh without ground primitives; (c) patches 

generated by over-segmentation; (d) planes generated by parameter-free plane detection; (e) geomesh after greedy culling; (f) extracted 

buildings; (g) extracted non-buildings; (h) FP primitives (blue) and FN primitives (green).  

 (a) 
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 (b) 

(c) 

    (d) 

    (e) 

     (f) 

   (g) 

      (h) 

Fig. 12. Detailed visualization of extraction results for H3D_51398: the figure captions for (a)-(f) are the same as those in Figure 11.   

 (a) 

(b) 
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(c) 

(d) 

              (e) 

                     (f) 

    (g) 
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  (h) 

Fig. 13. Detailed visualization of extraction results for Gm4B_1: the figure captions for (a)-(f) are the same as those in Figure 11. 

 (a) 

(b) 

 (c) 

   (d) 

(e) 

    (f) 
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 (g) 

(h) 

Fig. 14. Detailed visualization of extraction results for Gm4B_2: the figure captions for (a)-(f) are the same as those in Figure 11. 

(a) 

(b) 

(c) 

(d) 

              (e) 

                (f) 
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(g) 

                  (h) 

Fig. 15. Detailed visualization of extraction results for Gm4B_3: the figure captions for (a)-(f) are the same as those in Figure 11. 

5. Discussion 

5.1. Parameter setting 

Among the user-specified parameters, the values of patch-level and building-level parameters (i.e., 𝑑 , 𝑑 , 𝑑 ) 

have a relatively large impact on the results, while the default values of over-segmentation parameters (i.e., 𝜇 , 

𝜇 , 𝜇 , and 𝑑 ) are adapted to suit almost all scenarios. The default values were determined by prior knowledge 

and a number of tests as follows: 𝜇 = 1, 𝜇 = 0.4, 𝜇 = 0.1, 𝑑 = 1 𝑚, 𝑑 = 10 𝑚 , 𝑑 = 2 𝑚, and 𝑑 =

10 𝑚.  

 

In particular, 𝑑  controls the mean size of patches. Smaller 𝑑  would make patches more homogeneous, but it 

dramatically increases the computing time of plane detection. 𝑑  and 𝑑  in the greedy process have a strong 

relationship with extraction results because they represent the distinguishing threshold between the planes of 

small or low objects and those of buildings. If 𝑑  and 𝑑  are too small, they may lead to incomplete culling of 

small or low non-building objects. On the contrary, they may cause building primitives being over-culled 

mistakenly. The suggested ranges for 𝑑  and 𝑑  are: 5 𝑚 ≤ 𝑑 ≤ 30 𝑚 ; 0.5 𝑚 ≤ 𝑑 ≤ 2.5 𝑚. 

 

As shown in Fig. 16a-d, the larger 𝑑 , the more building primitives are incorrectly culled. As illustrated in Fig. 

13e-f, almost all mistakenly culled building planes can be greedily recovered, except for those whose area is 

much larger than 𝑑 . Therefore, 𝑑  is usually recommended to be slightly larger than 𝑑 . However, for 

efficient visualization and quick production, the geomesh is already sliced into tiles in the modeling software, 

and it is difficult to reconstruct the topology between tiles and re-slice them, so 𝑑  is usually set to the size of 

the tiles.  

(a)  (b) 

(c) (d) 
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(e) (f) 

Fig. 16. Effect of parameter 𝑑  on extraction results: (a), (b), (c), and (d) show a building after culling planes with an area less than 5 𝑚 , 

10 𝑚 , 20 𝑚 , and 40 𝑚 , respectively; (e) the same building after greedy recovery with 𝑑 = 10 𝑚 and 5 𝑚 ≤ 𝑑 ≤ 30 𝑚 ; (f) and 

after greedy recovery with 𝑑 = 10 𝑚 and 𝑑 = 40 𝑚 . Red polygons indicate the planes that are noticeably culled compared to (a); blue 

polygons indicate the primitives that are missed in the final building. 

5.2. Building geometric structure 

Since the planar characteristics of buildings are important to consider in the proposed framework, it is usually 

more beneficial for the detection that buildings are composed of a set of planes in a geomesh. However, 

buildings in cities have various shapes, and although rare, some may be entirely non-planar, such as agricultural 

greenhouses. Although a building cannot be completely non-planar according to Assumption 1 (cf. Section 3.1), 

the proposed method has been tested on a sample of such non-planar buildings. For a completely curved 

agricultural greenhouse as shown in Fig. 17a, the proposed plane detection method can still find relatively flat 

areas (Fig. 17b), and the geometric structure (Fig. 17c) remains intact after the culling of small and low planes. 

 

   

           (a)                          (b)                         (c) 

Fig. 17. Example of the non-planar building at different steps during the extraction process: (a) the building in the original dataset; (b) the 

planes detected from the building; (c) the building after the culling of small and low-rise planes. 

5.3. Building & canopy colors 

Since the color index is used to cull vegetation planes during the greedy culling process of non-building objects 

in the proposed framework, a small fraction of building planes that are very close to the vegetation color will be 

culled by mistake. For example, after vegetation planes are culled, the façades whose color is close to vegetation 

are culled (Fig. 18). Similarly, the green greenhouse in Fig. 17c is also culled by mistake as shown in Fig. 13 

after the culling of vegetation. Increasing the 𝑑  or replacing the vegetation culling method can address this rare 

phenomenon. 

 

Based on the datasets analyzed, it appears that color index is also difficult to adapt to non-green lush canopies 

such as maple canopies in the fall and grey canopies (fill color for empty textures as shown in Fig. 19). This may 

result in a small portion of vegetation not being culled cleanly, as illustrated in Fig. 19.  

 



      24 

 

   

            (a)                          (b)                         (c) 

Fig. 18. Example of building characterized by a color close to vegetation, at different extraction steps: (a) after culling of small and low-rise 

planes; (b) after culling of vegetation planes; (c) after greedy recovery. 

 

 

(a)                     (b)                     (c) 

Fig. 19. Example of green primitives of a tree at different extraction steps: (a) the tree in the original dataset; (b) culling of vegetation planes; 

(c) after greedy recovery. 

5.4. Objects adjacent to buildings 

As shown in Fig 11-15, the extracted FPs are mainly non-building primitives that are adjacent to buildings. 

These primitives are not topologically isolated from the buildings after ground primitives filtering, thus do not fit 

with Assumption 3 (cf. Section 3.1) so they end up being added during the greedy recovery step of the proposed 

framework. More details are visualized in Fig. 20. These incorrectly extracted non-building objects can be easily 

removed with some post-processing methods or manually. In addition, a smaller 𝑑  is beneficial in decreasing 

the number of these incorrectly extracted primitives. 
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Fig. 20. Three extracted buildings and some incorrectly extracted objects adjacent to them (marked by red polygons). 

5.5. Efficiency 

Ignoring the time of file input and output, the proposed framework and the implementation time for each step are 

listed in Table 4. Without any parallelism, the computation can be completed within 30 seconds for a mesh of 

about 1.5 million primitives and within 60 seconds for a mesh of about 5 million primitives. In the framework, 

over-segmentation takes nearly half of the total elapsed time. It is to be noted that the values of time required to 

undertake plane detection that is reported in Table 4 refer to the case of specified parameters rather than 

meta-heuristic optimization because the implementation time of Jaya optimization is random and difficult to 

count. 

 

For the 5 geomeshes used in the experiments, the implementation times of the observed parameter-free plane 

detection range between 20 and 60 minutes. The 𝜃 found by metaheuristic optimization usually lies between 

[28°, 32°], and 𝑑  usually lie between [3,8]. After testing, 𝜃 and 𝑑  can take any value within the intervals to 

obtain an ideal segmentation result. Therefore, the two above-mentioned intervals can be directly used for the 

recommended values of 𝜃 and 𝑑  to avoid excessive execution time. 

 
Table 4. Consuming time required by each part during the proposed framework. 

Geomesh ID 
over-segment

ation 
Plane 

detection 
Small planes 

culling 
Low planes 

culling 
Vegetatio
n culling 

Greedy 
recovery 

Total 
time  

H3D_51392 9.323 s 5.232 s 0.300 s 2.385 s 8.158 s 0.646 s 25.594 s 

H3D_51398 8.927 s 3.926 s 0.021 s 1.386 s 6.124 s 0.23 s 20.614 s 

Gm4B_1 28.153 s 14.006 s 0.107 s 3.475 s 5.619 s 2.063 s 53.423 s 
Gm4B_2 30.421 s 14.747 s 0.131 s 6.154 s 2.947 s 3.181 s 57.581 s 
Gm4B_3 26.132 s 12.981 s 0.112 s 5.179 s 6.274 s 2.830 s 53.508 s 

6. Conclusions 

Realistic 3D mesh objectification plays an essential role in generating semantic 3D models to support 

entity-level query and analysis in various 3D GIS applications such as digital twin cities and city information 

modeling (CIM). Efforts have been made to extract footprints and geometric information of buildings from 

images or point clouds, which can only capture limited building texture or geometric information, resulting in 

the obtained buildings being often fragmented.  

 

To address these challenges, this study presents a novel bidirectionally greedy framework for extracting 

geometrically complete 3D building models from geomeshes in an unsupervised manner. Differently from the 

objects extracted from point clouds that need to be reconstructed to generate 3D models, the framework can 

directly separate the realistic 3D building models from geomeshes. The proposed framework encompasses 

primitive over-segmentation, parameter-free plane detection, greedy culling of non-building planes, and greedy 

recovery of building primitives. This framework requires only a few parameters to set up by the operator that is 

easy to understand. The framework performance was quantitatively and visually assessed on five geomeshes 

with labels. Almost all the buildings were extracted correctly, with recall up to about 99% on Gm4B and overall 

classification accuracy higher than 86%. In addition, unlike existing methods that extract buildings that are often 

fragmented, the proposed framework extracts 3D building models with complete geometry, avoiding 

compromising their visualization and analysis capabilities. 
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Furthermore, the extracted models can be used to boost the instantiation of buildings, high LOD level CityGML 

construction, and the objectification of vegetation, roads, city furniture, etc., with a view to improving the query, 

analysis, and rendering capabilities of 3D, GIS and CIM applications. It can also assist in the production of 

labels for deep neural network training. 

 

Although the proposed framework is proven to be effective in the tasks of building extraction, there are still 

some problems to be solved: Firstly, since the color index is used to cull vegetation, a small fraction of building 

planes that are very close to the vegetation color will be culled by mistake. Similarly, the color index is difficult 

to adapt to a non-green lush tree canopy. Secondly, non-building primitives that are topologically adjacent to 

broken buildings obtained by greedy culling are prone to be mistakenly extracted. Future work will therefore 

focus on reducing the sensitivity of the method to color and instantiating the building further. 
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